
Eiger: A Framework for the Automated Synthesis of
Statistical Performance Models

Andrew Kerr∗, Eric Anger∗, Gilbert Hendry† and Sudhakar Yalamanchili∗
∗School of Electrical and Computer Engineering

Georgia Institute of Technology
{akerr, eanger, sudha}@gatech.edu
†Sandia National Laboratories

ghendry@sandia.gov

Abstract—As processor architectures continue to evolve to increasingly
heterogeneous and asymmetric designs, the construction of accurate
performance models of execution time and energy consumption has
become increasingly more challenging. Models that are constructed,
are quickly invalidated by new features in the next generation of
processors while many interactions between application and architecture
parameters are often simply not obvious or even apparent. Consequently,
we foresee a need for an automated methodology for the systematic
construction of performance models of heterogeneous processors. The
methodology should be founded on rigorous mathematical techniques
yet leave room for the exploration and adaptation of a space of
analytic models. Our current effort toward creating such an extensible,
targeted methodology is Eiger. This paper describes the methodology
implemented in Eiger, the specifics of Eiger’s extensible implementation
and the results of one scenario in which Eiger has been applied - the
synthesis of performance models for use in the simulation-based design
space exploration of Exascale architectures.

I. INTRODUCTION

The transition to many-core computing has been accompanied by
the emergence of heterogeneous architectures combining mainstream
mutltithreaded cores with accelerators such as vector units (Intel
AVX) or graphics processor units (GPUs), e.g., from AMD and
NVIDIA. Critically important are performance models which are
necessary for the efficient management of these architectures, e.g., in
task scheduling, as well being central to the design space exploration
of future heterogeneous processors. However, the increased com-
plexity of these architectures challenges the construction of accurate
performance models. In addition, the design-space exploration of
the interaction of future hardware and software that is necessary to
advance computing into the Exascale regime is highly dependent on
simulation and analytical modeling. Coarse-grained simulators such
as SST/macro [1] can be used to predict the performance of many
thousands of tasks running on millions of heterogeneous cores and
the communication between them using models of varying degrees
of fidelity, often trading off simulation performance for accuracy.
The periodic construction of accurate analytic models is central to
such analyses.

In this paper, we describe an automated statistical approach for
modeling program behaviors on diverse architectures and present an
evaluation of the application of the infrastructure to the problem
of generating performance models for graphics processing unit
(GPU) accelerators. Our objective is to design and implement a
methodology for discovering and synthesizing analytic performance
models of the runtimes and energy consumption of applications
executing on target heterogeneous processors.

Our approach discovers analytic relationships between the static
and dynamic parameters of an application and performance metrics.
For example, we may wish to capture the impact of the sparsity
of input data structures, dynamic execution count, and number of
function calls on the execution time. Or we may wish to discover a
relationship between the number of double precision load operations,
number of DMA calls, and occurrence of unconditional branches

on energy consumption. These are usually complex relationships
that elude manual discovery or effective application of off the shelf
models and mathematical techniques. This complexity is magnified
in modern and emerging heterogeneous processors. Broadly, our
methodology is comprised of 1.) experimental data acquisition and
database construction, 2.) a series of data analysis passes over the
database (possibly creating new higher order data), and 3.) model
selection and construction. The last phase automates the construction
of the software implementations of the models while the analysis
passes can utilize a rich source of existing data analytics techniques.

Our current implementation is Eiger, which achieves our goals
via statistical methods for dimensionality reduction and automated
model selection. Eiger constructs coarse-grain predictive models
when trained with results of similar applications on similar ma-
chines. The regression models may be as simple or complex as
desired using metrics ranging from fine grained counts of instruction
distributions to coarse grain estimates of computation working set
size. The infrastructure is easily extensible to new sources of
measurement data and supports the incremental addition of new
experimental data. Its modular structure supports the easy addition
of new analysis and model construction passes. Consequently, we
hope the infrastructure and framework will benefit other explorations
in the community by lowering the barriers to entry in performance
model generation or synthesis.

II. MODELING TECHNIQUE

This section describes elements of the proposed performance
modeling infrastructure as well as a formal definition of analyses
and the model selection algorithm.

A. Eiger Framework

A detailed illustration of the Eiger framework is provided in
Figure 1. The following components constitute an automated process
in which application profiling data is collected via a standardized
interface and ultimately used to construct a model of runtimes,
energy, or any other dependent result metric. The resulting statistical
model may be then composed with other tools and applications such
as simulation environments, heterogeneity-aware process schedulers,
and reporting tools. This paper describes the construction of models
of execution time. An application is executed on the target processor,
multiple parameters recorded, and execution time measured. This is
defined as one trial. Multiple trials for an application typically cover
different parameter values.

Measurements. Due to the mutually independent nature of each
trial, the individual runs required to accumulate this information can
intrinsically be run independently. We use a relational database to
manage the storage of all data accumulated during profiling runs
as it allows asynchronous insertions while allowing for rigorous
relational specifications. Additionally, we provide support for the

Analysis
Passes

Model
Construction

Reporting

Model estimation,
Regression analysis:
 linear least squares
 nonlinear least squares

Measurements

 RDBM

Compiler
Application

Instrumentation
(C, C++, assembly)

CPU

Performance counters,
Dynamic instrumentation

Static program
analysis

PCA, Varimax, and
Cluster analysis

Runtime and
 Energy Prediction

Recorded metrics
Cluster membership,
projected metrics Performance models

Intermediate results Intermediate results

 RDBM RDBM RDBM

Fig. 1: Implementation details of Eiger Statistical Model Creation framework.

scenario where execution runs of multiple tools are required to
construct a single data point (trial).

Analysis. The design supports the addition of analysis passes.
We will start with Principal Component Analysis (PCA) which
is a well-known dimensionality reduction technique. The major
computations are construction of a correlation matrix and computing
the eigenvectors of this correlation matrix via Singular Value De-
composition (SVD) [2]. Implementations of SVD are available in
LAPACK implementations, notably SciPy [3]. Benefits of reducing
the dimensionality of the input dataset are manifold; it speeds up
the model generation process, improves the clarity of the resulting
model, and allows for intuition into the correlations between input
metrics.

It is important to note that PCA is an unsupervised learning
technique in that it does not take the performance metric into account
when choosing dimensions to eliminate. It is entirely possible that a
dimension with low variance may have a larger affect on application
performance than one with high variance. For example, number of
cores may not have as large a variance as memory bandwidth for
a range of machines but a greater impact on runtime for compute-
bounded applications. PCA does not explicitly specify how many
dimensions to retain; rather it relies upon the user to make the final
decision.

Model Construction. Designing processors to accelerate general
sets of workloads would be significantly simpler if all workloads
exhibited similar performance characteristics. In contrast, real ap-
plications demonstrate varied performance behavior. Dense linear
algebra workloads with regular control properties and compute-
intensive inner loops differ significantly from irregular workloads
with data-dependent branch behavior and load imbalance across
threads. Goswami et al. [4] analyze the diversity of CUDA work-
loads and present a prioritized tree of benchmark applications sorted
by how much each increases total variance of a given set of
metrics. Applications exhibiting high correlation among principal
components are clustered together. A single model trained from
profiling data from all applications in a comprehensive benchmark
is unlikely to yield high accuracy. Rather, the best model is likely to
be obtained from training data gathered by a set of applications that
are “similar” to the experimental application. Kerr et al. [5] provide
empirical evidence that clustering and partitioning improves model
accuracy.
Model Pool The model pool defines a set of possible basis functions
which may be mapped to principal components and whose linear

Functions
x−2
i x−1

i x
−1/2
i log2(xi) x

1/2
i x1

i x2
i xi ∗ xj

TABLE I: Model pool.

combination yields the resulting performance model. The model pool
must be selected by the experimenter and should offer sufficient
variety for maximizing goodness of fit of the resulting model. The
model pool should include functions that closely model the space
and time complexity of dominant algorithms within the applications
of interest as well as non-linear combinations of several metrics.
For example, compute-bound applications may demonstrate a very
strong correlation between the product of clock frequency and
dynamic instruction counts. Table I describes the basis functions
used for this work.
Model Selection and Training. Model construction is a pass over
the data to produce a model. Our first model construction pass will
be automated regression analysis [6] which constructs an analytic
model determined from a set of training samples. In this case, the
samples are taken from data projected onto the principle component
basis vectors. Regression modeling yields an analytic formula for
computing runtime and energy from additional signals. PCA and
varimax yield orthogonal and uncorrelated principal components,
crucial assumptions enabling classic regression analysis techniques.
We propose the use of parametric regression models.

Each step in the stepwise procedure, shown in Algorithm 1,
considers the function from the model pool that, if added to the
current model, would increase the fit the most. If the R̄2 of the
this new model, including the candidate function, surpasses the R̄2

of the model without the new function by more than the provided
threshold, the function is added to the model, removed from the
model pool, and the algorithm starts again. When there are no more
functions remaining in the model pool that would pass this threshold,
the algorithm completes and returns the final model. This final model
may not have maximally reduced squared error for the training data,
but the formulation of R̄2 provides for a model that is more likely
to predict values not present in the training set.

Reporting Completed models consist of a set of transformation
matrices from dimensionality reduction and cluster analysis as well
as a vector of functions and their associated weights. Reporting
passes over this data will format the information in a method easily
consumed by the user, including plotting and statistical results.

This phase also allows for the serialization and memoization of the
finished models for later consumption. Finally, this phase produces
model descriptions in a format that can be imported by system
simulation tools and software modules such as run-time schedulers.

B. Formal Specification

Let m ∈ Z refer to the number of trials executed for a multiplicity
of applications, datasets, and machine configurations. Let n ∈ Z
refer to the total number of metrics (measurements) acquired per
trial. These may include static application metrics, dynamic metrics
acquired during the execution of the trial, and machine configuration
parameters.

We define X ∈ Rm×n as an input dataset and R ∈ Rm×1 as
a result set. Each row in X corresponds to a trial instance with
result (e.g., execution time) in the corresponding row of the column
vector R. Together, (X,R) captures sufficient data describing the
application, machine, and performance characteristics to construct a
model for R.

X =

...

m trials
...
. . . n metrics . . .

 R =

...

m results
...

Principle component analysis (PCA) yields a projection P from
X onto U ∈ Rm×p, where p ∈ Z, p ≤ n is the number of principle
components, such that all axes are orthogonal and are sorted in
decreasing amount of variance.

Clustering analysis enables a down-selection of trials used in
model computation. This analysis yields a subset of rows such that
U ′ = SU where U ′ ∈ Rm′×p,m′ ≤ m and S is a selection matrix.
This work applies k-means clustering which partitions a set of points
into k clusters such that each point in a cluster ki is closest to the
mean of ki than any other mean. The distance metric used in this
work is squared Euclidean distance, which gives increasingly greater
weight to the distance between two elements.

Model selection yields a function f : R1×p → R that maps
individual trials onto a predicted result value. f is the performance
model, and this work yields one model per cluster. Model selection
leverages linear regression, a commonly-used and well-behaved form
of regression that evaluates the dependent variable y as the weighted
linear combination of independent variables x plus an error term ε,
representing any deviation of the expected value of the model from
the real value.

y = β0 +

n∑
i=1

βixi + ε (1)

The method of model estimation is least squares, in which the set
of coefficients β is chosen to minimize the residual sum of squares

RSS(β) =

n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 (2)

Model selection itself composes a performance model as the
linear combination of a set of non-linear functions on the projected
profiling data. The set of possible functions is known as a model
pool, which can include basis expansions, mathematical transforma-
tions, and varaible interactions, among others. To allow for greater
generalizability, this work can iterate over a set of model pools and
select the one that minimizes squared error.

In order to manage model complexity and optimize training
error rate, a forward-stepwise procedure is used to aggregate ba-
sis functions based upon adjusted coefficient of determination, a
modification of the coefficient of determination that adjusts for the
number of terms in the model [7].

AdjustedR2 = R̄2 = 1− (1−R2)
n− 1

n− p− 1
(3)

It is important to note that R̄2 does not have the same interpre-
tation as R2; while R2 is in the range 0 → 1, R̄2 is in the range
−∞ → 1. The intuition is that any value of R̄2 less than zero
implies a fit worse than could be expected by chance.

profile, performance, modelPool = ... // initialize training data
threshold = ... // specification from user
finalModel = [] // empty set
currentRsquaredAdj = −∞
begin

while not done do
maximum = −∞
foreach each function left in modelPool do

add function to finalModel
U = apply finalModel to profile
beta = leastSquares(U, performance)
RsquaredAdj = ... // calculate adjusted rsquared
if RsquaredAdj ¿ maximum then

maximum = RsquaredAdj
newFunction = function
newBeta = beta

end
remove current function from finalModel

end
if maximum - currentRsquaredAdj ¿ threshold then

add newFunction to finalModel
remove newFunction from modelPool
currentRsquaredAdj = maximum

end
else

done = True // there are no more useful functions
end

end
end
return finalModel, beta, currentRsquaredAdj

Algorithm 1: Selects a model that minimizes error over a cluster

III. EVALUATION

This section describes the profiling infrastructure developed for
Eiger including a normalized schema for storing profiling data in a
relational database.
Application Interfaces. GPU Ocelot defines a functional simulator
[8] for NVIDIA’s PTX [9], a low-level RISC-like assembly language
for GPU computing. We extended this functional simulator to
capture detailed traces of dynamic instructions, SIMD utilization,
and effective memory bandwidth. We leverage the compiler analysis
functionality of GPU Ocelot to measure the metrics such as number
of live registers, frequency of synchronization, and registers per
thread.

Statistical performance modeling requires significant profiling to
properly characterize workloads and yield enough data points at
various configurations to adequately capture relationships among
metrics and results. Consequently, this work focuses on providing
a durable and centralized data store supporting concurrent access
from multiple data sources. We selected MySQL, a commercially

available open-source relational database management system, to
serve as the centralized data store. Eiger’s profiling database schema
supports flexible, user-defined metrics to capture application behav-
ior and machine configuration. At the top level, this work defines a
trial as one execution of a GPU compute kernel. The trial references
a particular application, machine configuration, and dataset and is
annotated with additional metadata capturing details about the trial’s
execution environment and purpose. The machine configuration is
a vector of real numbers describing characteristics of the target
processor.

A. Metrics

The set of metrics under consideration are partitioned into two
halves: application metrics and machine metrics. Application metrics
are independent of the device upon which they are run where as
machine metrics describe the execution hardware itself. Many of
these application metrics are consistent with metrics identified in
other workload characterization studies such as [10] which describes
a set of microarchitecture-independent metrics.

Application metrics characterize the runtime behavior of the trial
and are partitioned into deterministic and non-deterministic metrics.
Deterministic metrics are invariant across machines and are based
on profiling results obtained from executing the application on a
deterministic functional simulator. This work assumes that applica-
tions are race free, or that data races may be safely ignored without
impacting results. Non-deterministic metrics contain the results of
hardware performance counters, runtimes, and other metrics which
may vary non-deterministically across trials, even while all inputs
and machine configuration remain constant. This partitioning of met-
rics enables profiling runs to capture strictly necessary information
for each trial, as the deterministic metrics, by definition, do not vary
across executions. A summary of deterministic application metrics
are listed in Table II.

Metric Units Collection method
Memory Efficiency percentage instrumentation
Memory Intensity instructions instrumentation
Memory Sharing percentage instrumentation
Activity Factor percentage instrumentation
MIMD speedup instrumentation
SIMD speedup instrumentation
DMA Size bytes static analysis
Static Integer instructions static analysis
Static Memory instructions static analysis
Static Control instructions static analysis
Static Parallelism instructions static analysis
Static Float instructions static analysis
Static Special instructions static analysis
Dynamic Integer instructions emulation
Dynamic Memory instructions emulation
Dynamic Control instructions emulation
Dynamic Parallelism instructions emulation
Dynamic Float instructions emulation
Dynamic Special instructions emulation

TABLE II: Application metrics.

This work considers machine metrics, summarized in Table III
which capture the performance characteristics of processors under
consideration and define the dimensions of possible design space
explorations.

B. Validation Procedure

While there are many options for validation of regression models,
there is no universally agreed upon method. R2, known as the
coefficient of determination, is often used in regression analysis,

GTX 480 GTX 560Ti C2070
Issue width 2 3 2
Shader frequency (MHz) 1401 1645 1150
Memory frequency (MHz) 3696 4008 3696
Cores per Streaming Multiprocessor 32 48 32
Streaming Multiprocessors 8 8 8
Bandwidth (GB/s) 177.4 128 144
L2 cache (kB) 640 512 640

TABLE III: GPU processor metrics.

Suite Application Description

Parboil
fft Fast Fourier transformation

mm Dense matrix-matrix multiply

mri-q Magnetic resonance image recon-
struction in non-Cartesian space

Rodinia
hotspot Microprocessor thermal modeling

gaussian Linear system solver using Gaussian
elimination

bfs Breadth-first graph traversal

CUDA SDK

scalarprod Scalar product of vector pairs

eigenvalues Bisection algorithm for calculating
eigenvalues of tridiagonal matrices

binomialoptions Fair call price evaluator for Euro-
pean options using binomial model

scan Parallel prefix sum over large vec-
tors

boxfilter Box convolution filter for image
processing

mersennetwister Random number generator

TABLE IV: Applications.

but it can only indicate how close the model fits the trained data,
known as training error. Instead we would ideally like to know
how well the model performs for test data independent from the
training data, known as test error; however, this is complicated
by statistically unstable methods for test error estimation. For this
paper we will use K-folds cross-validation [11], a popular technique
for estimating prediction error. In K-fold cross-validation, the input
data set is randomly partitioned into K equally sized parts, denoted
K1,K2, . . . ,KK . For all i ∈ 1 . . .K, parts Kj 6=i ∀j ∈ 1 . . .K
are used to train the model, and part Ki is used for testing. The
performance of the model is then the average of all K runs. The
special case where K = N is known as leave-one-out cross-
validation.

To evaluate Eiger’s capacity for performance prediction, 12 bench-
mark applications, listed in Table IV, were selected and profiled in
detail using GPU Ocelot’s PTX functional simulator. This gathers
deterministic application-dependent profiling information using the
metric collection methodology laid out in Section II-B. Subse-
quently, the same set of applications were executed on NVIDIA
GPUs via GPU Ocelot’s NVIDIA backend. Light-weight profiling
tools attached to GPU Ocelot capture kernel execution times. Timing
measurements were made for each of the devices described in Table
III. The host machine is an Intel Core-i7 at 3.2 GHz.

C. Experiments

Varying Dimensionality. This experiment reduces the number of
dimensions retained after principal component analysis (PCA). Re-
ducing dimensionality is a lossy compression technique, which has
the potential to alias important metrics which may have a great
impact on the performance of the model. However, increasing the
dimensionality of the input data has the potential to complicate the
model, resulting in poor generalizability due to over fitting. As seen
in Figure 2, there is indeed a minimum where the benefit of reduced

Fig. 2: Error as dimensions are varied.

Fig. 3: Error as number of clusters are varied.

dimensions on model complexity are balanced out by the loss of
data.
Varying Cluster Count. This experiment increases the number
of clusters to demonstrate the performance benefits of generating
models from only like data points. Each data point in the experiment
set is predicted by the model whose cluster’s centroid is the closest.
The results, shown in Figure 3, demonstrate how the segmentation
into separate clusters for modeling can increase the quality of the
models, although at a certain point the quality of the individual
models decays due to the low number of data points in the cluster.
Varying New Function Threshold. This experiment reduces the
threshold for adding new functions to the final model. As the
threshold decreases, more functions that only marginally increase the
quality of the regression are included. This increases the dependence
on the training data and therefore the variance in the final model.
The effect of varying this threshold is demonstrated in Figure 4.
Varying Applications. In this experiment each application is pre-
dicted using models created from all of the other applications. This
experiment demonstrates how generalized the application metrics
are; instead of relying upon previous runs of the same execution
of the application to train the model, which may obscure some of
the application characteristics (e.g. algorithmic complexity, commu-
nication patterns, etc.), other applications with potentially widely
different algorithmic implementations are used. Results are shown
in Figure 5. Each application kernel is listed separately, indicated
by the number concatenated to the end of the application name.
Varying Machine Parameters. In this experiment the GTX 480 is
predicted by models trained on only the GTX 560Ti and the Tesla
C2070. This experiment demonstrates how well hardware metrics

Fig. 4: Error as convergence threshold varies.

Fig. 5: Predicted versus actual runtimes for each application for
models trained from all other applications, annotated by mean
squared error.

can describe the performance of a given application. Results from
this experiment, shown in Figure 6, indicate accurate predictions are
possible simply by varying machine parameters.

D. Discussion

Let us consider the structure of one of these models, where
a model is built from every trial except those from the second
eigenvalues kernel. All but nine principal components are
removed and all trials belong to a single cluster. The threshold used
in the model building algorithm is 0.01. The final model built takes
the form runtime = β0 ∗ log2(PC0) + β1 ∗ log2(PC8) + β2 ∗
log2(PC1) + β3 ∗ (PC2 ∗ PC3) where β0, β2 are positive and
β1, β3 are negative. Here PC0 represents problem size, including
contributions from dynamic instruction counts, function call depth,
and branches; PC8 represents SIMD utilization, i.e. parallelization
and control flow divergence; PC1 represents program size, con-
tributed to most by static instruction counts; PC2 ∗PC3 represents
throughput as the product of threading and efficiency. Intuitively,
this set of principal components makes sense: as problem size
increases, so does execution time, and as SIMD utilization and
throughput increase, execution time decreases. This resulted in a
29.28% average mean absolute percent error when predicting the
second eigenvalues kernel trials.

It is surprising that Eiger selects base-2 logarithms to construct the
performance model, however. This is a consequence of automated
model selection that attempts to find the best fit possible given the

Fig. 6: Predicted versus actual runtimes on the GTX 480 when model
is trained from the GTX 560Ti and the Tesla C2070, annotated by
mean squared error.

available model pool and training data. For the given problem sizes,
this performance model yields the best-fit model of runtimes. Careful
analysis of the algorithm, implementation, and target hardware
would almost certainly not express runtime as proportional to the
logarithm of dynamic instruction counts. And yet, doing so yields
the closest fitting performance model for the problem sizes in the
training data. Thus, Eiger is able to obtain the best performance
model given training data and may out perform analytic models.

IV. RELATED WORK

Jia et. al. [12] present a design space exploration technique which
simulates a random subset of GPU designs from a very large design
space then applies a stepwise regression modeling algorithm to
construct a performance estimator. Our work presents a flexible
framework for the composition and use of such existing and future
regression techniques to facilitate the construction and application
of performance models.

Genbrugge et al. [13] describe a method for constructing a
synthetic trace of a program execution bearing the same statistical
properties as a complete execution but of much shorter overall
length. Both approaches are focused on modeling specific phenom-
ena rather than enabling the construction of general models. Hong
et. al. [14] propose a predictive analytical performance model for
GPUs. Our approach, on the other hand, does not assume particular
processor architecture or machine model and instead attempts to
determine them based on measurable statistics that may change
substantially as microarchitectures evolve.

PCA-based approach to modeling GPU workloads executing on
either GPUs or CPUs. That work inspired the design of Eiger which
formalizes and automates the steps of application profiling, dimen-
sionality reduction, cluster analysis, and model selection. While
much of the cluster analysis and model selection performed in that
work was performed in a human-guided ad hoc manner, the Eiger
framework provides a automated implementation for i) imoporting
instrumentation data, ii) excercising the analysis passes, and iii)
searching the (extensible) space of performance models. The models
are exported in a format that can be used by simulators and software
systems. Goswami et al. [4] perform detailed characterization studies
of GPU applications using a detailed cycle-accurate simulator and
identify redundancies in characterization metrics among kernels
from different CUDA benchmark applications. The authors decom-
pose kernel executions to provide recommendations for prioritizing

the execution of benchmarks to exercise the most complete set of
program behaviors in as few trial executions as possible.

V. CONCLUSION

This study demonstrates the Eiger modeling framework for au-
tomating the generation of statistical performance models. Eiger
provides an automated method in which designers may profile
and characterize workloads, automatically construct performance
models, and evaluate performance sensitivity to processor config-
urations. Our results show models based on as few as 5-7 principal
components achieve fairly low mean squared error, but that adding
principal components can increase squared error. We also verify
cluster analysis has a strong impact on model accuracy due to
significant differences in workload characteristics among benchmark
suites. Finally, this empirical evaluation shows an automated statis-
tical performance modeling framework such as Eiger can provide
an effective approach to design space exploration of candidate
microarchitectures. The next step for us is the application to the
modeling of energy and power.

VI. ACKNOWLEDGMENTS

This research was supported in part by the National Science
Foundation under grant CCF-0905459 and Sandia National Labo-
ratories. Sandia National Laboratories is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy’s National Nuclear Security
Administration under contract DE-AC04- 94AL85000.

REFERENCES

[1] C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar,
D. A. Evensky, and J. Mayo, “A simulator for large-scale parallel
computer architectures.” IJDST, vol. 1, no. 2, pp. 57–73, 2010.

[2] G. Golub and C. V. Loan, Matrix Computations, 3rd ed. Baltimore,
MD.: Johns Hopkins University Press, 1996.

[3] “Scipy: Scientific tools for python,” July 2012, http://www.scipy.org/.
[4] N. Goswami, R. Shankar, M. Joshi, and T. Li, “Exploring gpgpu work-

loads: Characterization methodology, analysis and microarchitecture
evaluation implications,” in Workload Characterization (IISWC), 2010
IEEE International Symposium on, dec. 2010, pp. 1 –10.

[5] A. Kerr, G. Diamos, and S. Yalamanchili, “Modeling gpu-cpu work-
loads and systems,” in Third Workshop on General-Purpose Computa-
tion on Graphics Procesing Units, Pittsburg, PA, USA, March 2010.

[6] H. Samet, Foundations of Multidimensional and Metric Data Structures,
1st ed. Morgan Kaufmann, 2006.

[7] M. H. Kutner, C. J. Nachtsheim, and J. Neter, Applied Linear Regres-
sion Models, fourth international ed. McGraw-Hill/Irwin, Sep. 2004.

[8] A. Kerr, G. Diamos, and S. Yalamanchili, “A characterization and
analysis of ptx kernels,” in IISWC09: IEEE International Symposium
on Workload Characterization, Austin, TX, USA, October 2009.

[9] NVIDIA, NVIDIA Compute PTX: Parallel Thread Execution, 1st ed.,
NVIDIA Corporation, Santa Clara, California, October 2008.

[10] K. Hoste and L. Eeckhout, “Microarchitecture-independent workload
characterization,” Micro, IEEE, vol. 27, no. 3, pp. 63 –72, may-june
2007.

[11] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection.” Morgan Kaufmann, 1995, pp. 1137–
1143.

[12] W. Jia, K. Shaw, and M. Martonosi, “Stargazer: Automated regression-
based gpu design space exploration,” in Performance Analysis of
Systems and Software (ISPASS), 2012 IEEE International Symposium
on, april 2012, pp. 2 –13.

[13] D. Genbrugge and L. Eeckhout, “Chip multiprocessor design space ex-
ploration through statistical simulation,” Computers, IEEE Transactions
on, vol. 58, no. 12, pp. 1668 –1681, dec. 2009.

[14] S. Hong and H. Kim, “An integrated gpu power and performance
model,” in Proceedings of the 37th annual international symposium on
Computer architecture, ser. ISCA ’10. New York, NY, USA: ACM,
2010, pp. 280–289.

